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Abstract--The differential formulation employing a self-consistent concept is extended to study the direc- 
tional response of overall thermal conductivity in a porous medium containing anisometric pores. The 
anisometric pores distribute in a special direction relative to the incoming heat flux vector, rendering an 
anisotropic overall thermal conductivity tensor when discharging the heat flow in the porous medium. 
Cylindrical cavities with insulated surfaces are exemplified in the numerical example, demonstrating the 
directional response. Effects of the preferential orientation and the aspect ratio of the cylindrical cavities 

on the anisotropy of the overall thermal conductivity tensor are studied. 

INTRODUCTION 

Cavities or pores in a solid may be present in two 
ways : those resulting from natural consequences such 
as microcracks in rocks or microvoids in concrete, 
and those from artificial means such as load-induced 
damage in ceramic composites. In the former cate- 
gory, including powder metallurgical materials, 
internal cavities are produced in a natural fashion, 
implying that the cavities are randomly oriented in all 
directions in the porous medium. This is the physical 
basis for the traditional lumped formulation emphas- 
izing the geometrical alignment of the pore and the 
matrix material in terms of serial or parallel com- 
binations. In the latter category, on the other hand, 
orientations of the internal cavities depend on the way 
in which load is transmitted through the medium, 
implying that the spatial distributions and orien- 
tations of the internal cavities are restricted in a certain 
physical domain. Typical examples include micro- 
cracks induced by externally applied compression and 
delaminations along the interface between matrix 
material and second-phase strengthening fibers. A ten- 
sile hoop stress, as is well known, is produced in the 
direction perpendicular to that of compression. Such 
a tensile stress may break the local intergranular 
bounds, producing microcracks in the direction par- 
allel to the compression in an overall (or averaged) 
sense. The complicated microstructure among grains 
is a decisive factor determining the amount of devi- 
ation (of the microcrack orientations) from the direc- 
tion of the load. Delaminations along the interface 
between the matrix material and the strengthening 
fibers in the second example follow the spatial orien- 
tations of the fibers. When thermal energy is re- 
distributed by these internal structures, clearly these 

cavities oriented in a special way would induce a 
directional response measured by the overall thermal 
conductivity tensor. 

The random orientation of internal pores in all 
directions is a popular assumption made in the lumped 
formulation for the estimate of the overall thermal 
conductivity [1-5]. Inherited from such a simpli- 
fication, the resulting overall thermal conductivity is 
isotropic, which makes it possible to study other com- 
plicated mechanisms, such as the temperature-depen- 
dence of the effective thermal conductivity at elevated 
temperatures [6, 7]. The overall thermal conductivity 
in porous media containing randomly oriented pores, 
evidenced by the large volume of publication in the 
past two decades, has been well-understood. Many 
existing models seem to provide accurate predictions 
when compared to experimental data under the same 
assumption. One of the most important characteristics 
revealed by past research is that the overall thermal 
conductivity should be regarded as a structural prop- 
erty rather than an intrinsic thermal property of the 
material. For the case of randomly oriented pores in 
a matrix material, for example, the overall thermal 
conductivity strongly depends on the internal heat 
transfer across the pore surfaces [8]. The overall ther- 
mal conductivity, in other words, is a property reflect- 
ing the combined effect of thermal loading (including 
the internal heat transfer), geometry of pores and the 
intact thermal conductivity of the matrix material. In 
conjunction with the increasing desire of precision 
control for heat transfer in porous media, the ana- 
lytical model should be able to reflect such a com- 
plicated interactions among the three factors. 

The present work extends the differential for- 
mulation [8, 9] to study the directional response of 
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NOMENCLATURE 

characteristic dimension of the internal 
cavity [ram] 
characteristic dimension of the 
spheroidal cavity [ram] 
volume fraction of internal cavities 
Green's functions in the anisotropic 
medium 
added tensor in the overall thermal 
resistance tensor [m K W-J] 
common magnitude in the thermal 
conductivity tensor [W m l K ~] 
thermal conductivity [W m-~ K-~] 
total number of cavities per unit 
volume 
unit normal to the cavity surface 
associated heat flux vector in the 
boundary element method [W m-2] 
heat flux vector [W m -2] 
thermal resistance [m K ~ W ~] 
geodesic distance defined by equation 
(16) [(m 3 K W-l)~/2]. Radial distance 
[mm] 
surface area 
temperature [K] 
volume [m 3] 
spatial coordinates of the field point 
[mm] 
spatial coordinate of the observation 
point [mm]. 

Greek symbols 
/~ transformation matrix between the 

prime and the global coordinates 
6 Kronecker delta function 
®, • spherical coordinates in the prime 

coordinate system [°] 
,9, ~o Euler angles between the prime and the 

global coordinate systems [°]. 

Subscripts and superscripts 
C quantities in the cavity 
D the disturbance component (by 

cavities) 
i, j components in the x~ direction, 

i , j =  1,2,3 
M quantities in the matrix 
P the primary component 
q the heat flux component 
T the temperature component 
J? the volumetric average 
X' quantities in the prime (self-consistent) 

coordinate system 
X* dimensionless quantities normalized 

with respect to the corresponding intact 
values 

X ~ matrix inverse 
I XI determinant 
0 orientation angle of internal pores. 

the overall thermal conductivity in a porous medium. 
Subjecting to the impingement of an incoming heat 
flux vector, the source of anisotropy lies in the pref- 
erential orientations of internal cavities, which are 
assumed uniformly distributed in a matrix material. 
Because the orientations of these cavities are restricted 
in certain physical domains, re-distribution of heat 
flow by these cavities is expected to display a stronger 
dependence on directions. The anisotropic overall 
thermal conductivity tensor derived in this work is to 
quantify such a directional response. The internal heat 
transfer across the pore surfaces is an important factor 
affecting the overall thermal conductivity in porous 
media. For a better focus on the geometrical effect of 
preferentially oriented pores on the overall thermal 
conductivity, however, all the cavities shall be 
assumed insulated at this stage of exploration. 

THE DIFFERENTIAL FORMULATION 

Figure l(a) describes the cylindrical cavities uni- 
formly distributed in a matrix material. With regard 
to the orientations of these cavities, however, they are 
confined to a conical domain of 2q~0. The advantage 
of the self-consistent concept [8-13], as illustrated in 

Fig. 1 (b), lies in the assumed equivalence between the 
self-consistent system, including a single but rep- 
resentative cavity, and the real system, containing hun- 
dreds and thousands of real cavities. The thermal con- 
ductivity (resistance) tensors of the cavity and the 
matrix phases in the real system are, respectively, k~, 

M (R c) and koM (R~j), while that in the self-consistent 
system where the representative cavity is located is/~, 
(R~i). /~0 is the overall (or effective) thermal conduc- 
tivity tensor, the primary quantity to be sought for 
heat conduction through porous media. The differ- 
ential formulation [8, 9] absorbs the effect of internal 
cavities in an added tensor, Hij, in the overall thermal 
resistance tensor : 

l~i, = Rij + Ho( t~j) with 

/~i,=/~0~ and k0=R~ 7z (1) 

Should the H o tensor be determined, equation (1) can 
be used to solve the individual components of R~r The 
overall thermal conductivity tensor, k,y, is then the 
simple matrix inversion of/~/. In order to determine 
the H~j tensor, it is necessary to determine the HI, 
tensor in the prime coordinate system. The prime 
coordinates x; for i =  1,2, 3, as shown in Fig. l(b), 
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~q: real heat 53': averaged 
flux I[ heat flux 

v a single but 
~ ¢ P O ~  / ~ 3 ~ x  34 representative 
/ . g  . : . ~..' N cavity / 

/ ' " / i ~ / i "  k"C; R"C ~ X l ,  _ ~ ~  [ . _.:(: 1j q 

cavities ~ / ' /  i ' 7 '" " " ~ - ~ k , ; R , ,  f 
i n ~  ' i k..M;R. M /  ~ ' ~  'J / distributed 

a conical d o m a i n ~ . ~  J 

/ ( g l 3 ~ ' ~ ; b a l  coordinates) 
Xl¢ (a) Real system (b) Equivalent system 

(self-consistent) 
Fig. 1. Equivalence between (a) the real system containing preferentially oriented cavities in a conical 

domain of 2(p0, and (b) the self-consistent system containing a single but representative cavity. 
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are introduced to describe heat transport in the sell'- 
consistent system. The x~-axis is aligned with the 
incoming heat flux averaged over the entire volume of 
the porous medium : 

1 ? 
o; = p j, q;(x,) dV. (2) 

Relative to the global coordinate system xt, as shown 
in Fig. 2 with more details, the prime coordinates are 
defined by two Euler angles O and ~0. The H i tensor, 
as derived in refs. [8, 9], is the temperature averaged 

over the entire surface of the representative cavity in 
the self-consistent system : 

(T(x¢) .... 
H~7= I ~ ,  n i t x o d S  c for i , j , k =  1 2.3 (3) 

L ~ qj 

where n~(x'k) is the unit normal along the cavity 
surface, which varies from one location to another for 
anisometric pores. The H,j tensor is then the spatial 
average of the HIj tensor over the possible domains of 
~9 and ¢p, describing the cavity orientations, 

q3 

xi: global coordinate system 

ix' ,, 3 xi': local coordinate system 
x3 ~ '". aligned with tim incoming 

heat flux vector 
unit normal n i '  

- ... x 2 
'. - I , -  

XI' ~ ~ X ~  " 2' 

the representative single 
Xl cavity in the 

equivalent (self-consistent) system 

Fig. 2. The prime coordinate system describing the overall response in the self-consistent system and its 
relative orientations to the global coordinate system. 
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N 
(, 

[ | flimfljnn~mn(l~q) COS ¢p d~p d0  
H,  - (02 __0l)  J,9, ~o, 

(4) 

where (Fig. 2) /3 o is the matrix of direction cosines 
between xf and x,: 

[ -  sin 0 - sin ~0 cos 0 cos ~o cos 0] 

ft, = [ C o 0  -sin~osin0cos ~0 c°s~°sin0/'sin ~o ] (5) 
/ / 

For  cylindrical cavities restricted in the conical 
domain of q~ e [0, ~Po] [Fig. 1 (a)], while uniformly ori- 
ented in the ~-direction, 0e[0 ,  Dr], equation (4) 
reduces to 

Hi/= ~ J 0  J~o, [3M3*"H'"(&j)c°s~°d~°dO" (6) 

With the assistance of equation (6), therefore, equa- 
tion (1) can be used to solve the individual com- 
ponents of R0- For  porous media containing spherical 
pores and penny-shaped cracks [8, 9], the differential 
model has been applied to study the effects of cavity 
geometry and the internal heat transfer across the 
cavity surfaces. Excellent agreement with the exper- 
imental data results for porosity, going all the way up 
to 46 %, the largest value of porosity in the experiment 
of ref. [7]. 

BOUNDARY ELEMENT FORMULATION 

Temperature distribution on the surface of the rep- 
resentative cavity, as reflected by equation (3), is a 
decisive quanti ty determining the overall thermal con- 
ductivity (resistance) tensor in the differential for- 
mulation. With regard to the present problem, involv- 
ing a cylindrical cavity in an anisotropic material, a 
closed-form solution for temperature does not  exist 

~ The quantity Qzn~ is the projection of the associated heat 
flux vector onto the normal direction of the surface element 
with a unit normal n~. Should the conduction-convection 
model of internal heat transfer across the pore surface be 
considered, equation (12) becomes 

( OT OT OT) 
¢, ~ +G ex, +;,,, ~ n', 

( (?T ~T OT) 
+ &' ~ +k~'- ax'~ +&~ ax', nl 

/_ ~T _ ~T - ~T\ 
+~k33 ~x,i -}-k32 ~x,2 +k33 ~x,3)n; =hT 

with h being the averaged value of the heat transfer coefficient 
in the prime coordinate system. Physically, assuming insu- 
lated cavities will underestimate the overall thermal con- 
ductivity, especially in the high-porosity domain [8]. The 
insulated cavities assumed in this work illustrate the fun- 
damental procedure in the simplest case. The internal heat 
transfer across the pore surface can be accommodated by 
replacing the right side of equation (12) by h T in the bound- 
ary-element calculations. 

and a numerical method is needed. The boundary- 
element technique is more suitable for the present 
problem because (i) it does not require a field mesh 
(thus superior to the finite element method) for 
obtaining the surface temperature, and (ii) the Green's 
function needed for the exterior formulation is readily 
available. 

The temperature and the heat flux fields in the prime 
coordinates established on the cylindrical cavity, Fig. 
2, can be decomposed into the primary (p) and the 
disturbance a~ components : 

T= TIm + T (D) and Qi = QIP) +QI TM 

for i = 1,2,3. (7) 

The primary components,  T ~P) and Q}m, absorb the 
effect of the incoming heat flux q3, 

T (p) = [/~31x'l + R3:x2  + t~33x'3]q3 , consequently 

Q~P) = Q~m = 0; t3~pl ~ = - 0 ;  ( 8 )  

while the disturbance components,  T ~D~ and Q}D~, 
satisfy 

632 TID) d2 TcDI ~2 T~D) 
/~,, ~ +/~,~ + & ~  - -  

OX2 Z -  & 7  " axe-' 

~2 TIol 72 T~DI 

~2 T(o) 
-[- (]~ i 3 -[-/~3 i ) - -  0 (9) 

Ox'~ ax ;  

and 

Q~D~ - 0T~D~ 
= - - k  0 ~  for i , j =  1,2,3. (10) 

At a large distance away from the cavity, the regular 
condit ion for the temperature disturbance is imposed : 

T IDa=0 as x/(M 2+x~ 2+x~ 2)~oo.  (11) 

At the cavity surface, on the other hand, an insulated 
condition is assumed :t  Qin~ = 0 for i = 1,2, 3. For  
heat flow through an anisotropic medium [14], 
- Q ,  = [%(~?T/c?xj). In an unabridged form, it reads 

tOT - OT - e g ~ ,  

( ' T  - ' T  ¢?T) 
+ /7:33 ax~ +k32 ~ +/~33 ~ #3 = 0. (12) 

With the assistance of equation (8), equation (12) 
results : 

Q~D)=Q~D~=0 and r~D) 3 =q~  for x~eS c. 

(13) 

The disturbance component  of temperature satisfying 
equation (9) and the boundary  conditions (11) and 
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(13) can be arranged into an integral equation. The 
weighting functions are given by the free space Green's 
functions, GV(x~y~) for temperature and Gq(x~y~) for 
the corresponding heat flux vector [15] : 

triangular 

~ elements 

21- T(D) (X~) q'- fscGq(x;lY~) T(D) (Y;)n~'(Y~) dSC 

fsc.GT(x~ly~) , , , c = Qk(Y~)nk(Y,) dS  (14) 

where xl andy~ for i = 1,2, 3 are, respectively, the field 
point inside the equivalent medium and the obser- 
vation point on the cavity surface. The unit normal 
n~ and the differential surface S c, consequently, are 
functions of y~. The three-dimensional Green's func- 
tion for GV(x~ly~) in equation (18) has been derived 
[16]: 

~IR~I (15) GT(x~IY~)-- 4nr 

with [/~ijl denoting the determinant of the R0 tensor 
and r, the geodesic distance, defined by 

r=x/[ l~ j (x~-y~) (X; -y~)  ] for i , j = 1 , 2 , 3 .  (16) 

The Green's function for G~ (x~ly~) can thus be derived 
accordingly: 

_ c3G T 
Gq = -k~J ~x,  ~ , implying 

4nr 3 

The unit normals n~ of the cavity surface are involved 
in both equation (3) for the H,~ tensor and the integral 
equation (14), governing the disturbance temperature 
T (D). Numerically, it can be expressed in terms of the 
nodal coordinates of the boundary elements [15]. 

The integral equation (14) is discretized by the stan- 
dard boundary-element approximations. As shown in 
Fig. 3 for a typical boundary element mesh, both 
quadrilateral and triangular superparametric elements 
with constant functional approximation are used for 
this purpose. The discretization thus renders a system 
of linear algebraic equations to be solved for T (D) on 
the cavity surface : 

½ T~ TM + T)D)M,,, = QINT/' 

where the superscripts and subscripts m denote the 
nodal values at the ruth boundary element node, Q7 
is the associated heat flux vector, and Mint and NTi t 
result from the integrations of the kernel functions 
and the shape functions over each element. Since the 
Q ~D) functions are specified on the cavity surface, refer 
to equation (13), equation (18) can be solved for the 
disturbance temperature T~ D~ at each boundary 
element node. 

q 

i 

J 

J 

quadrilateral 
elements 

Fig. 3. Typical boundary element mesh of the representative 
cylindrical cavity and the triangular and the quadrilateral 

elements used in discretization. 

THE ITERATION TECHNIQUE 

Except for the three-dimensional Green's functions 
in an anisotropic material [equations (15) and (17)], 
the boundary element technique used in this analysis 

(17) is quite standard. In determining the surface tem- 
perature of the cavity, however, the overall moduli, ,~i, 
or #ij, in equations (8) and (14)-07) are the primary 
unknowns to be determined. At the stage of deter- 
mining the surface temperature, in other words, they 
are still unknown. An iterative scheme is thus 
developed to overcome this difficulty. The overall ther- 
mal resistance (conductivity) tensor in the equivalent 
(self-consistent) system is first assumed to be identical 
to the intact thermal resistance (conductivity) tensor, 
i.e. 

#}o) = k,j and ~I °) = g~j. (19) 

Based on such zeroth order approximations, the sur- 
face temperature is calculated by the boundary 
element method. Integrating numerically for the 

(18) Hi(°) tensor according to equation (3), and the H} °) 
tensor according to equation (6), results in 

H!9) = H!0)~17(0)~ (20) 
q - -  - - q  ~ - - q  i "  

Substituting equation (20) into equation (1), thefirst- 
order approximation for the overall thermal resistance 
(conductivity) tensor results : 

}~!1) = R~i+Hv(/~0)), #9) = [/~)')]-' (21) 
t )  q " 

The newly obtained overall thermal resistance (con- 
ductivity) tensor is then used to determine the surface 



28 D.Y. TZOU 

temperature and calculate the second-order approxi- 
mation for K}/2 ) and .w/7~2~ in the same manner. The 
iteration continues until the change of  the components  
in the overall conductivity tensor is less than a pre- 
scribed threshold. Such an iterative scheme, as shown 
later, results in a rapid convergence for the present 
problem. 

NUMERICAL EXAMPLES OF SELECTED CASES 

The directional response induced by the cylindrical 
cavities oriented in a conical angle of  ~P0 = 30 ° is first 
studied. The radius, a, and length, l, of  the rep- 
resentative cavity are, respectively, 1 and 2 mm. The 
thermal conductivity tensor for the matrix material is 
assumed to be 

0, 0i3 ] 
k i /  = 1 2 0 4 K (22) 

[0.3 0.4 

which is normalized with respect to the k33 component .  
The amount  of  anisotropy induced by the pref- 
erentially oriented pores depends on the intact thermal 
conductivity tensor. The particular components  in 
equation (22) are selected for obtaining a more exag- 
gerated directional response in the overall thermal 
conductivity tensor. Simpler cases such as an isotropic 
or orthotropic conductivity tensor can be equally well 
selected as the basis of  the analysis, but the difference 
among the components  in the resulting overall ther- 
mal conductivity tensor may not be as pronounced. 
The value of  K can be arbitrarily chosen because the 
overall thermal conductivity tensor, /~u, shall be 
obtained relative to the individual components  of  k~j : 

/%, 
k * = ~  for i , j = 1 , 2 , 3 .  (23) 

F o r f  = Na 3 = 0.5, Fig. 4 shows the rapid convergence 
of  the k* components  when the number of  elements 
discretizing the cavity surface increases. A desirable 
uniform convergence results for all the components  of  
k*. The number of  elements is thus fixed at 45, which 

f = 0.3, 45 e lements  
0.9 - - -4~-- - '  ~ 0 - - - 6 - - ~ - - -  ~ - - - ,  

k]3 

0.8 

0.7 

0.6 

0,5 

0.4 

kt, 

____~____~___._kb ~ ~_ 

2 3 4 5 6 

number  of  i t e ra t ion  

Fig. 5. Convergence of the k* components with increase of 
the number of iterations, f =  0.3 and 45 elements, q~0 = 6if, 

a = l m m a n d / = 2 m m .  

is sufficient for all the analyses in this work. Figure 5 
shows convergence of  the k* tensor with the number 
of  iterations : refer to equations (19)-(21) for the suc- 
cessive approximations of  the overall thermal resist- 
ance tensor. For  all the analyses performed in this 
work, the iteration continues until the difference 
between two successive approximations, say 
/~!~) -(~ ,/ -- R~j '), is less than 10 -5 compared to the previous 
value of  #~! ') With numerical convergence thus 
examined, Fig. 6 displays the variations of  the k~* 
components  with the volume fraction ( f =  Na 3) of 
the cylindrical cavities. A strong directional response 
results, as reflected by the different values of  the k* !/ 

components  at various values o f f .  The anisotropic 
overall thermal conductivity tensor remains 
symmetric. The preferential orientations of  the 
internal cavities, most importantly,  introduce a non- 
linear effect in the distributions vs the volume fraction. 
The k*3 component  experiences the least amount  of  
degradation [because the area reduction associated 
with the variation of  orientations for 2¢p0 = 60 ° is least 
in the direction of  x3, refer to Fig. l(a)], while the 
component  k*2 suffers a more serious degree of  degra- 
dation. The linear isotropic response [17] is enclosed 
for comparison. Along with the other components  of  
k*, the isotropic distribution is bounded by the curves 

1.0 

0.9 

0.8 

0.7 

0.6 

f = 0.5, tp0 = 30 degrees  

o o k h  
k h  

t~ k~s 
© kla  
v ki3 
o k~3 

O 

0 . 5  ~ -  . . . . . .  ~ - -  a - - - - a - - - - - ~ - -  

0 . 4  ............................................. 0 10 20 30 40 50 
number  of  e lements  

Fig. 4. Convergence of the k* components with increase of 
the boundary elements, f =  0.5, ~o0 = 30 °, a = 1 mm and 

l =  2mm. 

~0 = 30 degrees  

0.8 i - ~ ~'~ ~,~ ~ ..~ _.~ 

0 . 6  i 

0 . 4  - k~2 
k h  
k12 

0.2 k~ 
k~3 I 
i so t rop ic  " " 

I l l  I 
0"~01.0 I 0 , 1  0 . 2  0 3  0 . 4  

f 

0.5 

Fig. 6. Nonlinear response of the anisotropic components of 
k~ with the volume fraction parameter. ~o0 = 30% a = 1 mm 

and l = 2 mm. Isotropic case corresponds to q~0 = 90°- 
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~Oo = 60 degrees 

o.s .. ~ZL ........ ..... 

0.6 . . . .  "~' ~'~ ~-. 

0 .4  kh  . . . . .  
k~3 .... 

kh  - -  ' 

0.2 k~, _ 
k~s 

, isotropi¢ 
o 

0'u.0 0 1 0.2 0.3 0.4 0.5 

f 

Fig. 7. Anisotropic components of k* varying as a function 
of the volume fraction parameter. ~o 0 = 30 °, a = 1 mm and 

l =  2mm. 

~Oo = 30 degrees 

' 0.0 0.1 0.2 0.3 0.4 0.5 

f 

Fig. 8. Anisotropic components of k,~ varying as a function 
of the volume fraction parameter. Penny-shaped cavities with 

~00=30 ° , a =  l m m a n d l = 0 . 1 m m .  

of k*3 and k*2. For  the case of q~0 = 60 °, distributions 
of the k~ components  are shown in Fig. 7. Degradation 
becomes more pronounced for all components,  due to 
larger domains of cavity orientations. Deviations 
among the k* components,  especially for k*~, k* 3 and 
k*3, dramatically increase. The k*~ and k*2 
components,  however, remain close because the cavi- 
ties are uniformly oriented in the ~-direction [refer to 
Figs. 1 (a) and 2]. 

For  a rather flat geometry with a = 1 mm and 
! = 0.1 mm, the case close to penny-shaped meso- 
cracks [8, 9], Fig. 8 shows the distribution of k* for 
~00 = 30 °. A smaller amount  of degradation results 
compared with that in Fig. 6 for all components,  
because less area reduction is induced by the penny- 
shaped cavities. The results for q~0 = 60 ° are shown in 
Fig. 9. Again, larger degradation (for all components) 
and larger deviations (among k ' t ,  k*3 and k*3) result 
compared with those in Fig. 8. As shown by Figs. 6 -  
9, the isotropic approximation is not  appropriate, not  
even in the mean sense, should a directional response 
result from the preferential orientations in the cavity 
distribution. When the value of q~0 approaches n/2 
[Figs. l(a) and (2) and equation (6)] with ~0~ = - n / 2  
and ¢p2 = n/2, the overall conductivity tensor k* 
reduces to the isotropic value. For  a typical value of 

f =  0.5 and a = 1 mm, this asymptotic behavior is 
shown in Fig. 10 (for 1 = 2 mm) and Fig. 11 (l = 0.1 
mm). k* 3 is the only component  which monotonically 
reduces to the isotropic value, while the other com- 
ponents "swing" to the isotropic value from below. 
Identity between the k~*~ andk*2 components,  to be 
reiterated, results from the uniform distribution of the 
cavities in the o%direction. For  cylindrical cavities, not 
only preferentially oriented in ~o e [0, ~/6], but also in 
9e[5~/6,  7~/6], as shown in Fig. 12 for the case of 
penny-shaped cavities (a = 1 mm and l = 0.1 mm), 
the distribution of k*~ is no longer identical to that 
of  k*2. Instead, k*~ suffers much more pronounced 
degradation than k*2. Equation (4) with qh = 0, 
~o2 = n/6, 9~ = 5zt/6 and ~2 = 7~/6 is used in this case. 
Compared to Fig. 8, where ~0 is in the same physical 
domain while 0 is from 0 to 2n, an even stronger 
directional response results as reflected by the large 
deviations among all the components.  The dis- 
tributions of k* remain nonlinear,  but become 
concave. The concave behavior implies degradation 
with a faster rate (with respect to f )  in the domain, 
with larger values of porosity. 

C O N C L U S I O N  

Heat transport  through porous materials is a com- 
plicated subject depending on the internal structures 
of cavities in the matrix material. The overall (effec- 
tive) thermal conductivity is a structural property 
reflecting the combined effect of thermal loading, geo- 
metrical configuration and spatial distributions of 
cavities and the relative thermal properties of the cav- 
ity and the matrix material. These three factors depict 
the way in which heat flow is re-distributed by the 
internal cavities. In most cases, however, the three 
factors are tangled together in a nonlinear fashion and 
they must be considered simultaneously. While other 
important  characteristics of the overall thermal con- 
ductivity need to be further pursued, such as the 
irregular shapes of internal cavities [6] and the tem- 
perature-dependent behavior in a high temperature 
environment  [6, 7], the present work has explored the 
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Fig. 9. Anisotropic components of k~ varying as a function 
of the volume fraction parameter. Penny-shaped cavities with 

coo = 60", a = 1 mm and l = 0.1 mm. 
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Fig. 12. Distributions of  the k* components for penny-shaped 
cavities oriented in ¢p E [0, ~/6] and ~ E [5n/6, 7~/6]. a = 1 mm 

and l = 0.1 mm. 

poss ib le  d i rec t iona l  r e sponse  induced  by the  in te rna l  
cavit ies  d i s t r ibu ted  wi th  preferen t ia l  o r i en ta t ions .  
Such  a d i rec t iona l  r esponse ,  ref lected by the  an iso-  
t rop ic  overal l  t he rmal  conduc t iv i ty  tensor ,  sig- 
nif icant ly  devia tes  f r o m  the  i so t rop ic  response ,  as 
s h o w n  by  Figs.  6-9 .  F igures  10 and  11 reveal  the  
t r ans i t ion  f r o m  an  an i so t rop ic  to  an  i so t rop ic  r e sponse  
shou ld  the  in ternal  cavit ies b e c o m e  r a n d o m l y  a n d  uni-  
fo rmly  d i s t r i bu ted  in the  p o r o u s  m e d i u m .  D u e  to c o m -  
plexi ty  o f  the  d i rec t iona l  r esponse ,  the  b o u n d a r y  

e l ement  m e t h o d  has  been  used to ob t a i n  the surface  
t e m p e r a t u r e  o f  the  represen ta t ive  cavity.  T h e  fast  uni-  
f o r m  conve rgence  pa t te rns ,  Figs.  4 and  5, s u p p o r t  the  
feasibil i ty o f  the  m e t h o d  w h e n  used for  such a 

purpose .  The  numer ica l  c o m p u t a t i o n  is economica l .  
In  ca lcula t ing  the nine  c o m p o n e n t s  o f  the  overal l  ther-  

mal  conduc t iv i ty  at  f =  0.5, the  m o s t  t i m e - c o n s u m i n g  
case in this s tudy,  the  execut ion  t ime is a b o u t  90 s for  

10 i tera t ions .  This  da t a  is based  on  the  use o f  a 486- 
50 persona l  c o m p u t e r .  
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